Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Med Virol ; 93(12): 6479-6485, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1530178

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in early December 2019 has rapidly widespread worldwide. Over the course of the pandemic, due to the advance of whole-genome sequencing technologies, an unprecedented number of genomes have been generated, providing both invaluable insights into the ongoing evolution and epidemiology of the virus and allowing the identification of hundreds of circulating genetic variants during the pandemic. In recent months variants of SARS-CoV-2 that have an increased number of mutations on the Spike protein have brought concern all over the world. These have been called "variants of concerns" (VOCs), and/or "variants of interests" (VOIs) as it has been suggested that their genome mutations might impact transmission, immune control, and virulence. Tracking the spread of emerging SARS-CoV-2 variants is crucial to inform public health efforts and control the ongoing pandemic. In this review, a concise characterization of the SARS-CoV-2 mutational patterns of the main VOCs and VOIs circulating and cocirculating worldwide has been presented to determine the magnitude of the SARS-CoV-2 threat to better understand the virus genetic diversity and its potential impact on vaccination strategy.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology , China/epidemiology , Evolution, Molecular , Genome, Viral/genetics , Humans , Mutation , Mutation Rate , Phylogeny , Spike Glycoprotein, Coronavirus/immunology , Whole Genome Sequencing
2.
Expert Rev Mol Diagn ; 21(6): 547-562, 2021 06.
Article in English | MEDLINE | ID: covidwho-1182936

ABSTRACT

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has pushed the scientific community to undertake intense research efforts. Understanding SARS-CoV-2 biology is necessary to discover therapeutic or preventive strategies capable of containing the pandemic. Knowledge of the structural characteristics of the virus genome and proteins is essential to find targets for therapies and immunological interventions.Areas covered: This review covers different areas of expertise, genomic analysis of circulating strains, structural biology, viral mutations, molecular diagnostics, disease, and vaccines. In particular, the review is focused on the molecular approaches and modern clinical strategies used in these fields.Expert opinion: Molecular approaches to SARS-CoV-2 pandemic have been critical to shorten time for new diagnostic, therapeutic and prevention strategies. In this perspective, the entire scientific community is moving in the same direction. Vaccines, together with the development of new drugs to treat the disease, represent the most important strategy to protect human from viral disease and prevent further spread. In this regard, new molecular technologies have been successfully implemented. The use of a novel strategy of communication is suggested for a better diffusion to the broader public of new data and results.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Vaccines/pharmacology , COVID-19/epidemiology , SARS-CoV-2/genetics , Animals , COVID-19/etiology , Genome, Viral , Humans , Mutation , Phylogeny , SARS-CoV-2/isolation & purification , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL